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Conditions are given which guarantee the existence of a best approximation
by generalized rational functions with respect to a generalized integral norm,
which includes as a special case all L,,, norms.

Let T be a nonnegative continuous function. Let S denote the integral on
[a, b]. For measurable g on [a, b] define II g II = ST(g).

Let P and Q be two finite-dimensional linear subspaces of C[a, b]. Define R =

{p/q: PEP, q E Q, q;$ O}. The approximation problem is given a bounded
measurable J, to find an element r* E R minimizing II1- r II over all r E R. Such
an element r* is called a best approximation.

1. BACKGROUND

"Norms" of this type with a less general -r were considered by Walsh
and Motzkin [4] for linear approximation. A case of special interest arises
when

-r(t) = I tiP o <p < 00.

In this case, the approximation problem is a problem of best L p

approximation.
If g is measurable, then -reg) is measurable and II g II is well defined; it may,

however, be +00. There is no reason to require that g be integrable, since
this does not ensure that -reg) is integrable.

The family of rational functions which is most often considered is the
family {plq : PEP, q E Q, q > O} of "admissible" rational functions. This
family has many desirable properties, including continuity of all its elements.
However, in order to guarantee existence of best approximations we must
consider a larger family, such as R or

f? = {plq :PEP, q E Q, q ~ 0, q =t= O}.

An examination of the existence proofs of this note shows that they hold also
for f? (providing, of course, it is nonempty).
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Often R (or R) will contain elements which are not continuous. There is,
therefore, little to be gained in requiring that/be continuous. To ensure that
/ - r is measurable, we must verify that r is, which we do later.

One difficulty with generalized rational functions is the zeros of their
denominators. One way of getting around this difficulty is to adopt a
hypothesis similar to that of Boehm [1] for Chebyshev approximation.
We shall say that Q has the zero-measure property if for any q E Q, q '¥=- 0,
the set

Z(q) = {x : q(x) = O}

is of measure zero. This hypothesis is satisfied by the common linear families
used for denominators, such as polynomials, sums of exponentials, and
trigonometric polynomials. This hypothesis makes the values of p/q at the
zeros of q completely irrelevant to JT(f - r) and so we can assign any
value to r at the zeros of its denominator.

The results of this paper are generalizations of the existence, theorems in
Refs. [4, pp. 1228-1229] and [5, pp. 357-358]. In the first of these, an existence
theorem is given for linear approximation with respect to a restricted class of
T-norms. In the second an existence theorem is proved for £'1' approximation
by (ordinary) rational functions. Existence theories for Chebyshev approxi
mation by generalized rational functions can be found in Refs. [1, 2, 6, 7].

2. MEASURABILITY OF RATIONAL FUNCTIONS

LEMMA 1. Let p, q be continuous on [a, b] and let Z(q) be o/measure zero.
Then p/q is measurable on [a, b].

Proof Let E > 0 be given. Z(q) is a closed set and so [a, b] ,......, Z(q) is
open. It is a countable union of disjoint open intervals. Select a finite set U
of these intervals such that meas(U) > meas[a, b] - E/2. Select a closed
subset F of U such that meas(F) > meas[a, b] - E. Set g(x) = p(x)/q(x) for
x E F. Then g is continuous on F and has a continuous extension to [a, b].
By Luzin's Theorem [3, p. 41], p/q is measurable.

3. EXISTENCE ON AN INTERVAL

It is useful to parametrize R. Let {PI'"'' Pn}, {qi ,... , qm} be bases for P
and Q, respectively, and define

R(A, x) := peA, x)/Q(A, x) := I akPk(X)/ I. an+kqk(X),
k~1 k~1

II A II = max{1 ai I : i ~ i ~ n}.
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Without loss of generality we can normalize R(A, x) so that

m

L: Ia/c+n I = 1.
1e~1

(2)

LEMMA 2. If {II Ale II}~ 00, then there exists a nondegenerate closed
interval I such that

M le = inf{1 f(x) - R(AIc, x)] : x E I}~ 00 as k~ 00.

Proof By the argument given at the start of the proof of Theorem 1 of
Ref. [2], IIAIe II ~oo impliesinf{ /P(AIe, x) I: x E I}~oo for some nondegenerate
closed interval I. Now

inf{1 R(A Ie ,x)1 : x E I} ~ inf{1 P(AIe, x)1 : x E I}/f. {sup I qiy)1 : y E I}
j~l

and the right side tends to infinity as k~ 00. The conclusion of the lemma
follows easily.

THEOREM 1. Let Q have the zero measure property and let T(t)~ 00 as
I t I~ 00. Then there exists a best approximation to each bounded measurable
functionf

Proof Let

p(f) = inf (Ilf - R(A, ')11 : f I an+lc I = 1).
1e~1

If this infimum is infinite any approximation is best. Otherwise, let
{Ilf - R(AIc, ')II} be a decreasing sequence with limit p(f). If {II Ale II} is
unbounded we can assume that {II Ale II}~ 00 and, using Lemma 2, we have

I T(f - R(Ak, .) ;? rT(f - R(AIe, .)) ;? II min{T(f(x) - R(AIe, x)): x E I},

where I is as in Lemma 2. The extreme right side tends to infinity as
k ~ 00. It follows that Ilf - R(AIc, ')11 ~ 00, a contradiction. Hence {II Ale II}
is bounded and {Ale} has a limit point A; we may assume {Ale}~ A. Then
{R(AIe, -)} converges, except on Z(Q(A, .)), to R(A, -). Hence T(f - R(AIe, .))
converges pointwise to T(f - R(A, .)) except on Z(Q(A, ')), a set of measure
zero. By Fatou's Theorem [3, p. 59],

JT(f - R(A, .)) ~ 1~~ Jr(f - R(A Ie , .)) = p(f).
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4. ApPROXIMATION BY ADMISSIBLE RATIONAL FUNCTIONS

In some cases we can show that a best approximation exists which is
admissible. We modify a definition of Cheney and Goldstein [6, p. 234].

DEFINITION. The triple P, Q, II II is said to have property (C) if PEP,
q E Q,fmeasurable and bounded on [a, b], Ilf - p/q II = ,\ imply that there
exist Po E P, qo E Q with qo > 0 such that

(3)

An immediate consequence of Theorem 1 is

COROLLARY. Let P, Q, II II have property (C) and let Q have the zero
measure property. Then an admissible best approximation exists to each
bounded measurable function f

We now apply the corollary to the most common case of interest.

THEOREM 2. Let there exist an ex > 0 such that 7"(t) ~ ex I t I. Let f be a
bounded measurable function and let P, Q be, respectively, the families of
polynomials ofdegree n - 1, m - 1. There exists an admissible best approxi
mation to f

Proof We verify property (C). Suppose r = p/q has a pole. Define II III
to be the L l norm. Now

Ilf - r II ~ ex Ilf - r III ~ ex II rill - ex Ilflll ,

and as [I rill = 00, Ilf - r II = 00. Hence (3) is always satisfied. If p/q has no
poles there exists an admissable rational function Po/qo differing from it on
only finitely many points and so Ilf - Po/qo II = Ilf - p/q II· Thus property (C)
holds; the zero measure property obviously holds for Q.
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